SHORT COMMUNICATION

BIOSYNTHESIS OF THE PIPERIDINE NUCLEUS: METABOLISM OF D- AND L-LYSINE-2-14C BY NICOTIANA GLAUCA

TERRY J. GILBERTSON

College of Pharmacy, South Dakota State University, Brookings, South Dakota 57006, U.S.A.

(Received 12 October 1971)

Abstract—D- and L-lysine-2-¹⁴C were administered to intact *Nicotiana glauca* plants. Anabasine and pipecolic acid were isolated. The results show that L-lysine is the preferred precursor of anabasine and p-lysine is the preferred precursor of pipecolic acid. This supports Spenser's hypothesis that pipecolic acid and the piperidine alkaloids derived from lysine do not have 6-amino-2-ketohexonoic acid as a common intermediate.

INTRODUCTION

RECENTLY Gupta and Spenser¹ have suggested that there are two routes for the metabolism of lysine. One route proceeds through 6-amino-2-ketohexanoic acid to pipecolic acid in the intact rat, in intact plants, and in excised shoots of Sedum acre. The second route proceeds through a non-symmetrical derivative of 1,5-diaminopentane or 5-aminopentanal to the piperidine alkaloids, anabasine, N-methylpelletierine, and sedamine.²

Since D-lysine has recently been shown to be a major precursor of pipecolic acid in the intact rat,³ intact ryegrass, and intact corn seedlings,⁴ we decided to find out if the route to anabasine preferred the D- or L-isomer of lysine.

RESULTS

The plants were able to distinguish the L-isomer from the D-isomer as shown by the fact that the L-isomer was 98% absorbed in two days while the D-isomer took six days to reach 98% absorption. The % incorporation of L-lysine-2-14C into anabasine from this experiment was at least twice that previously reported from DL-lysine-2-14C. L-lysine-2-14C was a 30 times better precursor of anabasine than D-lysine-2-14C, and D-lysine-2-14C was a 48 times better precursor of pipecolic acid than L-lysine-2-14C as judged by the % specific incorporation of the products (Table 1).

¹ R. N. GUPTA and I. D. SPENSER, Phytochem. 9, 2329 (1970).

² E. LEETE, Acc. Chem. Res. 4, 100 (1970).

³ J. A. GROVE, T. J. GILBERTSON, R. H. HAMMERSTEDT and L. M. HENDERSON, *Biochim. Biophys. Acta* 184, 329 (1969).

⁴ R. W. ALDAG and J. L. YOUNG, Planta 95, 187 (1970).

⁵ E. LEETE, J. Am. Chem. Soc. 80, 4393 (1958).

Administration of L-lysine-2-14C	Wt. (mg)	Activity (dpm)	Specific activity (dpm/mM)	% Specific incorporation
L-Lysine-2-14C	55.2	3.00×10^{7}	0.988×10^{7}	
Anabasine diperchlorate	38.0	2.26×10^{4}	2.15×10^{5}	2.17
Pipecolic acid hydrochloride	34.2	3.01×10^3	2.26×10^4	0.22
Administration of D-lysine-2-14C				
D-Lysine-2-14C	45.3	3.00×10^{7}	1.20×10^{7}	
Anabasine diperchlorate	37.6	9.02×10^{2}	8.71×10^{3}	0.072
Pipecolic acid hydrochloride	35.7	2.62×10^{5}	1.26×10^{6}	10.5

Table 1. Incorporation of L- and D-Lysine into anabasine and pipecolic acid

DISCUSSION

The results confirm the previous work^{3,4} that p-lysine is the preferred precurors of pipecolic acid. They show that L-lysine is the preferred precursor of anabasine. This lends support to Spenser's hypothesis¹ that pipecolic acid and the piperidine alkaloids derived from lysine do not have 6-amino-2-ketohexanoic acid as a common intermediate.

The fact that D-lysine is an extremely good precursor of pipecolic acid is not easy to rationalize. It may result from an aberrant metabolic pathway in the organisms efforts to convert D-lysine to L-lysine. The organism might convert the D-isomer to 6-amino-2-keto-hexanoic acid which may spontaneously cyclize to Δ^1 -piperideine-2-carboxylic acid. The Δ^1 -piperideine-2-carboxylic acid could be reduced to pipecolic acid. The pipecolic acid could then accumulate as it is known to be a relatively inert metabolite in the rat, but it is readily metabolized by chickens and rabbits. Fowden's work suggests, however, that it is relatively inert in *Acacia homaphylla*. The other possibility is that plants make small amounts of D-lysine as a side product of L-lysine biosynthesis and that pipecolic acid represents a detoxification product.

EXPERIMENTAL

Labelled compounds. DL-Lysine-2-¹⁴C was purchased from International Chemical and Nuclear Corporation. It was resolved by the method of Rothstein and Miller⁶ as previously described.³ The crude D-isomer was rendered free of the L-isomer by treatment with L-lysine decarboxylase. This should have given D- and L-isomers with the same specific activity. Since this was not the case both isomers were chromatographed on Dowex 50 (H[®] form) and recrystallized. The specific activity did not change and no evidence for the presence of 1,5-diaminopentane-1,5-¹⁴C in the D-isomer was obtained. L-Lysine-2-¹⁴C monohydrochloride had a $\begin{bmatrix} a \end{bmatrix}_{\rm D}^{25} + 19\cdot 4 \pm 0\cdot 5^{\circ}$ (c, 2 in 0·6 N HCl) (lit.¹⁰ +18·7) and a specific activity of 0·988 × 10⁷ dpm/mM. D-Lysine-2-¹⁴C monohydrochloride had a $\begin{bmatrix} a \end{bmatrix}_{\rm D}^{25} - 19\cdot 0 \pm 0\cdot 5^{\circ}$ (c, 2 in 0·6 N HCl) and a specific activity of 1·20 × 10⁷ dpm/mM.

Administration of the isomers to Nicotiana glauca. The N. glauca plants were grown from seed in soil until they were about 4 months old. They were transferred to an aerated hydroponic nutrient solution which was identical to that described by Leete⁵ except that it was found necessary to increase the amount of FcSO₄ by 20 mg/l. to prevent chlorosis. After 2 weeks the plants had many new roots and had resumed growth. 2 plants of approximately the same size were chosen and their roots immersed in 1 l. of fresh nutrient solution. L-Lysine-2-¹⁴C HCl was added to the nutrient solution of one plant and p-lysine-2-¹⁴C HCl to the

⁶ M. ROTHSTEIN and L. L. MILLER, J. Biol. Chem. 206, 243 (1954).

⁷ J. Grove and L. M. Henderson, Biochim. Biophys. Acta 165, 113 (1968).

⁸ J. Grove and H. G. Roghair, Arch. Biochem. Biophys. 144, 230 (1971); and personal communication with Dr. Grove.

⁹ L. FOWDEN, J. Exptl Bot. 11, 302 (1960).

¹⁰ F. J. KEARLEY and A. W. INGERSOLL, J. Am. Chem. Soc. 73, 5783 (1951).

other. The L-isomer was 98% absorbed in 2 days, while the D-isomer was not 98% absorbed until the 7th day. On the 7th day both plants were harvested.

Isolation of anabasine. Anabasine was isolated by preparative TLC on 1 mm Merck silica gel—PF with CaSO₄¹¹ in CHCl₃-MeOH-NH₄OH (60: 20: 1). The R_f for anabasine was 0.56 (lit. 11, 0.58), and it was extracted into EtOH and converted to the diperchlorate, m.p. 165–166°, which was recrystallized to constant activity with EtOH and Et₂O.

Isolation of pipecolic caid. The basic aqueous solution from which the alkaloids had been extracted with CHCl₃ was evaporated to dryness. L-Pipecolic acid HCl (150 mg) was added to the residue and it was allowed to stand with 200 ml MeOH overnight. The MeOH was heated to boiling, filtered, and the solvent evaporated. The residue was stirred with 10 ml $\rm H_2O$ and centrifuged to remove the undissolved solids. The aqueous solution was applied to a Dowex 50 \times 8, 200–400 mesh (H⁺ form) column of 1 \times 40 cm. The column was washed with H₂O until the eluent gave a negative Molish test and contained little radioactivity. The amino acids were eluted with N NH₄OH. The amino acid containing fractions were combined and evaporated to dryness. The residue was dissolved in 3 ml of 50% v/v HCl and treated with NaNO₂ until the solution was ninhydrine negative. The solution was extracted 3 \times Et₂O (10 ml) The Et₂O was dried (Na₂SO₄), evaporated, and the yellow oil which resulted was mixed with 4 ml conc. HCl and heated at 100° for 25 min. The HCl was evaporated and 5 ml H₂O was added and evaporated 3 \times until a crystalline residue resulted. The residue was dissolved in 1 ml MeOH and the pipecolic acid HCl precipitated with Et₂O. The compound was recrystalized to constant specific activity from MeOH and Et₂O. m.p. 252–256° (lit. 12, 256–258°) and gave an IR spectra identical with that of an authentic specimen.

Acknowledgements—We thank Professor Edward Leete for providing the N. glauca seed and the National Institutes of Health for support through Research Grant 1 RO1 HE 13613-01 MCHA.

```
<sup>11</sup> E. LEETE, J. Am. Chem. Soc. 91, 1697 (1969).
```

Key Word Index—Nicotiana glauca; Solanaceae; biosynthesis; piperidines; L-lysine; p-lysine; anabasine; pipecolic acid.

¹² R. M. Zachavius, J. F. Thompson and F. C. Steward, J. Am. Chem. Soc. 74, 2949 (1952).